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FOREWORD

NASA experience has indicated a need for uniform criteria for the design of space
vehicles. Accordingly, criteria are being developed in the following areas of technology:

Environment
Structures

Guidance and Control
Chemical Propulsion

Individual components of this work will be issued as separate monographs as soon as
they are completed. A list of all published monographs in this series can be found at the

end of this document.

These monographs are to be regarded as guides to the formulation of design requirements
and specifications by NASA centers and project offices.

This monograph was prepared under the cognizance of the Langley Research Center. The
Task Manager was G. W. Jones, Jr. The authors were R. B. Noll and J. Zvara of Aerospace
Systems, Incorporated. A number of other individuals assisted in developing the material
and reviewing the drafts. In particular, the significant contributions made by the
following are hereby acknowledged: R. L. Goldman of Martin Marietta Corporation:
B. M. Hall, D. L. Keeton, and W. C. Nowak of McDonnell Douglas Corporation: J. K.
Haviland of the University of Virginia: L. D. McTigue and H. M. Voss of The Boeing
Company; R. E. Martin of General Dynamics Corporation; G. H. Moore of Lockheed
Missiles & Space Company: C. H. Spenny of NASA Electronics Research Center: and
D. C. Wade of NASA Manned Spacecraft Center.

NASA plans to update this monograph periodically as appropriate. Comments and
recommended changes in the technical content are invited and should be forwarded to
the attention of the Design Criteria Office, Langley Research Center, Hampton, Virginia
23365.

November 1971
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GUIDE TO THE USE OF THIS MONOGRAPH

The purpose of this monograph is to provide a unitorm basis for design of flightworthy
structure. [t summarizes for use in space vehicle development the significant experience
and knowledge accumulated in research, development, and operational programs to
date. It can be used to improve consistency in design, efficiency of the design etfort.
and confidence in the structure. All monographs in this series employ the same basic
format - three major sections preceded by a brief INTRODUCTION, Section 1. and
complemented by a list of REFERENCES.

The STATE OF THE ART. Section 2. reviews and assesses current design practices and
identifies important aspects of the present state of technology. Selected references are
cited to supply supporting information. This section serves as a survey of the subject
that provides background material and prepares a proper technological base for the
CRITERIA and RECOMMENDED PRACTICES.

The CRITERIA, Section 3, state what rules, guides, or limitations must be imposed
to ensure flightworthiness. The criteria can serve as a checklist for guiding a design

or assessing its adequacy.

The RECOMMENDED PRACTICES, Section 4, state iow to satisfy the criteria.
Whenever possible, the best procedure is described: when this cannot be done,
appropriate references are suggested. These practices, in conjunction with the criteria,

provide guidance to the formulation of requirements for vehicle design and evaluation.
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STRUCTURAL INTERACTION
WITH CONTROL SYSTEMS

1. INTRODUCTION

During design and development of a space vehicle, it is necessary to determine the
interrelationship of the structure with both active and passive control systems. Elastic
deformation of the vehicle structure, induced by environmental or vehicle-originated
forces, can result in perturbations to the control system; conversely, the control system
can produce forces which excite the flexible structure.

Properly considered, structure and control-system interactions can potentially result in
lower design loads and more efficient structural design. If these interactions are
improperly assessed, vehicle performance can be jeopardized, structural components can
fail, or the vehicle may be destroyed. Inadequate engineering assessment may result from
the use of incorrect or inaccurate structural data for the control-system design, from
failure to predict local deformations correctly, and from failure to give proper
consideration to the structural contribution to the interaction. Table I in Section 2 lists
specific instances in which structural interaction with the control system caused
problems.

This monograph assesses the state of the art and presents criteria and recommended
practices for determining the structural data and a mathematical structural model of the
vehicle needed for accurate prediction of structure and control-system interaction; for
design to minimize undesirable interactions between the structure and the control system;
and for determining techniques to achieve the maximum desirable interactions and
associated structural design benefits. All space vehicles are treated, including launch

vehicles, spacecraft, and entry vehicles.

Important structural characteristics which affect the structural model used for structural
and control-system interaction analysis are as follows:

. Vehicle vibration mode shapes and frequencies
° Structural damping ratios

* Mass and stiffness distribution of the vehicle



o Major component dynamics
. Local detormation characteristics

Local structural components which the structural designer can readily change to influence
the interaction include:

° Effector linkage (an effector is a control-force producing device and its
actuator)

. Effector support structure
. Sensor mounting brackets
L Joints

. Appendages

Interactions occur in many ways, depending on the vehicle configuration and mission. An
undesired interaction. once identified. can often be alleviated by modification of the
control system. In some cases, however, the most expedient and least costly solution is a
structural modification, usually in local structure.

Generally, interactions can be anticipated and potential problems solved in the design
phase. With a cooperative effort between the structural and control-system designers. an
adequate structural model can be established: in particular, this model must specify the
uncertainties (tolerances) in the structural characteristics so that the control-system
designer can account for them properly. Also, it may be possible to use control-system
techniques which will allow the control system to interact with the structure to reduce
loads and detlections and thus, in theory. permit a more efficient structural design. .

Two monographs (refs. | and 2) have been published on the directly related subject of
the effects of structural flexibility on control systems of spacecraft and launch vehicles.
These monographs treat the subject chiefly from the control-system viewpoint, whereas
the present monograph is concerned chiefly with the structural aspects of the subject.
The determination of structural modal data, such as needed for the prediction of
structure and control-system interactions, is the subject of reference 3. The means of
achieving liquid damping required for control-system stability are discussed in the
monograph on liquid slosh suppression (ref. 4). Inflight wind loads that affect the
interaction are discussed in reference 5. Staging, ignition, and other transient operations
that may affect control-system stability are discussed in the monographs on staging loads
(ref. 6) and thrust transient loads (ref. 7).



2. STATE OF THE ART

The structural data and the sophistication of the structural model required for accurate
prediction of structure and control-system interactions depend on the mission and vehicle
configuration and complexity. Generally, current analytical and experimental techniques
for determining structural characteristics are adequate for investigating such interactions.
When the structural characteristics and mathematical model have been determined,
interaction analyses are conducted using a dynamic model developed through one of the
following methods: modal coordinate, discrete parameter, hybrid coordinate, or energy
sink. For all space vehicles, the interaction analysis is supplemented by simulation studies,
component tests, system tests, and, when necessary, flight tests.

Problems caused by interaction usually result from not recognizing the numerous ways
the interactions can occur and a failure to analyze the vehicle dynamic system in
sufficient depth and detail. The variety of possible interactions is best shown by examples
of problems actually experienced. Table I presents examples of structure and control-
system interaction in launch vehicles, spacecraft, and entry vehicles to illustrate successful
designs that encountered problems initially, space vehicles which experienced interactions
during flight, and the design changes incorporated to circumvent the inflight problems.
Additional information and references about such interactions can be tound in

references 1,2, 8, and 9.

The relationship of the flexible-body dynamics to the elements of an active control
system is shown in typical-block-diagram form in figure 1. The controller processes input
commands, structural feedback signals, and effector-state signals, and generates outputs
to command the effectors (i.e.. the control-force-producing devices and their actuators).
Actuators drive the control-force devices, such as gimbaled engines or control surfaces,
with actuator feedback loops controlling the actuator motions. The control forces affect
the vehicle motion and inevitably excite the flexible-body modes. The motion of massive
control-force devices. such as engines, control surface, or control-moment gyros, also
produces inertia forces which can yield undesirable deflections of the support structure.
In addition. external influences such as wind gusts (ref. 5) produce disturbing forces
which may excite the vehicle vibration modes. The total motion of the vehicle, both
rigid-body and flexible-body, at the location of the sensors is detected by the sensors and
fed back to the controller.

There are other interactions between the control system and the structure that may cause
difficulty. Actuator and engine dynamics may interact with structural deformations.
Mechanical vibration and aeroelastic effects can adversely affect control etfectiveness,



TABLE I. - INTERACTION PROBLEMS

Space vehicles

Problem

Cause

Solution

LAUNCH
VEHICLES:

Atlas/Mercury
launch MA-2
(Atlas 67D)

Little Joe
i[1/Apollo
Vehicle 12-51-1

Saturn IB
SA-203

Thor-Agena A

Saturn V

Atlas4A

Saturn 1V-B/
Apollo LM

Apollo CSM
SC 009 stack

Titan 111-B and
I1-M Stage 11

Little Joe
I/Apollo
Vehicle 12-51-1

Titan Il with
Dyna Soar
(X-20) payload

Nondestructive contro)-
system limit cycle

3.5-Hz vibration mode
oscillation caused excessive
elevon motion

Control system gimbaled
engines through three
cycles of oscillation prior
to holddown release

Potentially destructive
5-Hz oscillation during
first-stage flight

Pitch control gyro on yaw
axis produced significantly
larger signals than a backup,
pitch gyro located on the
pitch axis

Nondestructive 17-Hz.
limit-cyele oscillation

Strong resonance of S-[VB
second mode

“Tail-wags-dog” vibration
effect during ground
checkout

Divergent motion predicted
prior to flight

Oscillation of aerodynamic
control surfaces upon
activation of hydraulic
system

Degradation of control
stability predicted

Unstable slosh mode where third
slosh harmonic coincided with first

‘bending mode giving high structural

response

Incorrect payload mass distribution
in modal analysis

Structural oscillations excited
by ground winds were sensed by
control system sensors

Yaw rate gyro sensed first bending
mode slope 180 deg out of phase
with those predicted by theory

| Under applied dynamic loads,

flexible mounting plate bent as
a result of instrument unit shell

deformation

Structural feedback from both
local and vehicle body
deformations

Large unpredicted deformations
of adapter structure sensed by
control-system gyros

Bending vibration data erroneous
because of insufficient model

Engine resonance associated with
an actuator-load feedback loop

Natural frequency of the control
surface approximately equal to
resonant frequency in the rate-
BYTO Sensor system, causing
control-system vibration to be fed
back through structure and sensed
by gyros

Winged payload caused coupling of
flexible and rigid-body frequencies,
and destabilizing shift of aero-
dynamic center of pressure

'Higher rate/position gyro gain

ratio stabilized slosh which
reduced interaction

Control system modified

Post-flight analysis of structure in
cantilever condition with control
system active; oscillations within
design limits

Pivot supports provided at each
end of the gyro-mounting bracket
Gyro relocated; control-system

filter networks redesigned

Control systems modified

Relocation of the gyro package

to the bottom of the mounting

plate

Control system modified after
update of structural model

Modify control system auto-
pilot and the actuator feed-
back loop; increase stiffness
of engine backup structure

Control system modified

Large fins mounted aft
on Titan 11




TABLE I. — INTERACTION PROBLEMS — Continued

Space vehicles

Problem

Cause

Solution

Saturn V

Longitudinal oscillations
caused by pogo sensed by
lateral control gyros

Stiffness asymmetries of Apollo
spacecraft payload coupled
longitudinal and lateral modes

Three-dimensional finite-element
analysis used to determine coup-
ling; control system insensitive
to coupled frequency excited by
pogo; pogo instability eliminated
by installing bleed-gas accumu-
lator in LO3 line

SPACECRAFT:

Explorer 1

ATS-5

Apollo
CSM/LM

Alouette |

1963-22A

RAL

OGO I

oGO IV

Dynamic instability

Dynamic instability

Predicted exceedance of
strength in docking
latches

Despin

Attitude errors

Possibility of dynamic

oscillations

Limit-cycle oscillations

Limit-cycle oscillations

Energy dissipation; bending of
whip antennas

Energy dissipation caused by fluid
motion in heat pipes attached to
cylindrical solar arrays
Uncertainty in prediction of struc-
tural parameters; possibility of

bending excitation by autopilot

Thermal bending of booms resulted
in despin torques on the satellite

Thermal bending of gravitational
gradient stabilization booms

Very long booms susceptible to
large deflections

Control system/boom flexibility
interaction

Thermal flutter

Account for energy dissipation; for
Explorer 11, eliminate antennas

Account for all sources of energy
dissipation

Control system autopilot designed
to allow for wide tolerance in
structural parameters

Analyze effects of solar radiation
on booms; for Alouctte I,
mounted plates on ends of
booms to counteract despin

Silver plate booms; mount lossy-
spring damper on end of boom

Booms constructed with closed
cross section; exterior silver
plated; boom perforated;
interior painted black

For OGO 1V, analyzed for boom
damping ratio of zero; control
system modificd

Use closed cross-section boom; for
OGO V, used a shorter boom

ENTRY
VEHICLES:

X-15

Limit-cycle oscillations
and structural resonance
vibrations

Limit-cycle oscillations
and structural resonance
vibrations

Resonance between horizontal-
tail bending frequency and
stability augmentation system
(SAS) frequency

Lightweight control system gyro
mount allowed vibration from
control surface motion to be
sensed

Add notch filter 1o SAS

Stiffen gyro mount; modify SAS
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Figure 1. — Block diagram of an active control loop with flexible-body dynamics.

structural integrity, and sensor performance. The sensor mounting structure may exhibit
undesired responses due to the local flexibility. Propellant and payloads may also exhibit
significant dynamic characteristics which affect structural vibration modes of the vehicle.
The interaction is direct for vehicles with passive control systems, such as a
gravity-gradient system, in which the structure is an integral part of the control system. In
this case, structural deformation or vibration is directly an error or vibration in the
control system.



2.1 Design to Optimize Interaction

It is usually impractical to solve interaction problems by changing the gross structural
vibration characteristics of the space vehicle because of extreme weight penalties. Thus, if
an undesirable interaction is determined, it is usually treated and minimized by
modifications to the control system. However, design for rigidity in local sensor, actuator,
and control-force structure and for minimum free-play in joints is good design practice
for minimizing undesirable interaction and can often be accomplished with little weight
penalty. Furthermore, simplicity in design allows accurate prediction of structural
characteristics and assists in the design of a more simple and reliable control system.

When there is close coordination and cooperation between the structural and the
control-system designers, the structural designer is in a better position to establish
reasonable and acceptable structural constraints for effective control-system design.
Likewise, any severe structural loading caused by the control system can be considered in
the structural design. In many cases, an active control system can be designed to reduce
the structural loads and deflections through the proper selection of trajectories and
load-relief systems, and by implementation of vibration-mode stabilization systems. Such
control-system techniques permit design of more efficient, minimum-weight structure.
The optimization of interaction requires an adequate and accurate description of
structure to allow for evaluation of vehicle modes, cross-coupling effects. excitation
sources and transmission paths, and substructure characteristics (refs. 3 and 10 to 12). An
adequate and accurate description of structure is also required to evaluate modal coupling
and damping, control-surface reversal, structural stiffness, sensor mount characteristics,
flight vibration, and propellant slosh loads (refs. 10 and 13).

Present technology and analytical techniques for evaluating structural interactions with
the control system are usually adequate for predicting or alleviating interaction problems,
especially for launch vehicles with well documented design techniques. The interaction
problem in spacecraft, however, is not as well understood because of the numerous ways
the interactions can occur and the wide range of dynamic configurations. Experience with
entry vehicles utilizing flexible structure is limited, but aircraft-design techniques are
generally applicable, with the added complication of the thermal environment.

2.1.1 Structural Design

The design of structural components and local structure can influence the interaction
between the structure and the control system. Stiffness is usually desired and linear
structural elements are generally used to simplify the analysis. However, many areas
involve nonlinear structure — particularly joints, interfaces, and integral parts of the
control system. In spacecraft, nonlinear structures include those which fold out, deploy,
or employ locking devices.



These structures are usually linearized either by piecewise linearization or by describing
functions (ref. 14). Nonlinearities are usually included if simulations (such as the
simulation of actuator dynamics of a spacecraft which performs thrusting maneuvers) are
used. Since these areas are difficult to model accurately, their characteristics are generally
verified by test.

The following discussion examines several of the more critical components and local
structures and presents illustrations which reveal the intricate nature of the interaction
problem and its costly consequences.

2.1.1.1 Sensor Mounting

Interaction problems associated with sensor mounting have occurred even though
strength and location requirements were met. The problems were caused when excessive
flexibility in the sensor mounting resulted in erroneous sensor signals or sensor saturation.

Sensor mounting problems were experienced on the Thor-Agena A and the Saturn V
launch vehicles (table 1). On the Thor-Agena A, rate gyro outputs were 180 deg out of
phase with overall vehicle rotations because of sensor-mount deflections. The sensor
mount was modified to prevent the phasing problem. The Saturn V difficulty was caused
by deformation of the mounting plate used for the control gyros (fig. 2), resulting in
excessive signals in the pitch gyro. The problem was solved by relocating the gyro to a
position at a lower corner of the mounting plate where the local distortions were less, and
by redesigning the control system filter networks. The feedback problems produced by
bending the mounting plate could have been avoided if the pitch and yaw gyros had been
mounted sepuarately on the respective neutral axes of the vehicle because the local defor-
mations which are produced by shear along these axes are substantiaily lower than those
produced by the high stresses from bending at the original location.

Structural resonance vibration was encountered during ground tests of the stability
augmentation system (SAS) for the M2-F2 lifting body (fig. 3). Vibration from the
control-surface motion sensed by the control-system gyros resulted in structural
feedback. The structural resonance vibration was attributed to the lightweight construc-
tion of the gyro mounting framework. The problem was eliminated by stiffening the
gyro platform assembly and by modifying the SAS (ref. 15).

2.1.1.2 Actuator Linkages and Backup Structure

The dynamics of actuators used to effect control-system forces (e.g., gimbaling of an
engine or deflection of a control surface) are usually considered in interaction analyses.

However, flexibility of the local structure to which the actuation equipment is attached
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Figure 2. — Saturn V local deformation.



Rudder {yaw control)
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Vertical defiection—roll control;
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. pitch trim)
Lower flap
{pitch control)

Figure 3. — M2-F2 lifting body.

may adversely affect the actuator dynamics and contribute to an interaction problem.
The Atlas 4A launch vehicle (table I) experienced a control-system limit-cycle oscillation
which was attributed to gimbal actuator flexibility in conjunction with the third lateral
vibration mode. The problem was unsuspected because preflight analysis and simulation
studies did not include nonlinear response characteristics of the actuators and support
structure involved in this interaction problem.

Actuator dynamics are usually represented by a nonlinear model; hydraulic fluid
compressibility, hose restraint, gimbal friction, backup-structure flexibility, and engine
flexibility are included if necessary, particularly for the massive engines used on launch
vehicles.

2.11.3 Engine Support Structure and Linkage

The dynamics of gimbaled engines, used primarily for launch vehicles, are closely related
to the actuator dynamics and may cause interaction difficulties. One problem usually
revealed by design analyses is that of engine resonance caused by a coincidence of a
structural vibration frequency and engine natural frequency (engine natural frequency is a
function of engine mass and inertia. engine mount elasticity, and actuating equipment
dynamic characteristics). Another form of engine resonance was encountered in analyses

10



performed on Stage [1 of the Titan I11-B and Titan III-M (table I). The resonance
condition involved the fundamental vehicle vibration mode. engine natural frequency,
and an actuator-load teedback loop. The situation was corrected by moditying the
control-system autopilot and the actuator teedback, and by increasing the stiffness of the

engine backup structure.

2.1.1.4 Appendages

Extendible booms have been used on numerous spacecralt for gravity-gradient
stabilization. as antennas. and for spin-rate control. These booms are highly tlexible.
nonlinear structures which are difficult to test, and have contributed to a number of
unexpected interaction problems (ref. 1). These problems include despin of Alouette |
caused by asymmetrical bending of booms, degraded pointing accuracies of the 1963-22A
and 1964-83D satellites caused by static and dynamic bending of gravity-gradient booms,
and limit-cycle oscillation of OGO-I11 and OGO-1V related to vehicle-originated excitation

and thermal flutter, respectively.

Analysis of booms is now accomplished with models which incorporate the nonlinear
aspects of the structure and its forcing functions. As a result of flight experience, booms
have been developed which are stiffer because of a closed tubular cross section. and which
are less susceptible to solar radiation effects because of highly reflective exterior surfaces,
perforations. and highly absorptive interiors (ref. 16). Typical booms are those used on
the Radio Astronomy Explorer (RAL) satellite (ref. 17). Choice of the boom depends on
the amount of deflection which can be tolerated. The deflections which can be expected

with 100-foot booms having an overlapped cross section are as tollows:

. Extendible booms designed to minimize thermal bending (viz., made {rom
screening or with perforations to allow unitorm solar heating over the cross
section) cun be expected to attain tip angular deflections on the order of 1 deg.

) If the boom is continuous, but has an outside silverplated surface polished to a
high luster, then peak tip angular deflections of between 2 and 5 deg can be
expected.

. If the exterior surface of the boom has comparatively high solar absorptivity,
then peak tip angular deflections in excess of 10 deg can be expected.

Appendages other than booms include wire antennas, solar arrays, and parabolic dish
antennas. The flexibility inherent in the attachment of the appendage to the vehicle
center body is usually considered in the dynamic analyses. For example, the Ranger
spacecraft was modeled as two solar arrays and a dish antenna flexibly connected to a

11



rigid center body. If the appendage itself is a flexible body. then the dynamics of the
appendage are considered.

A problem peculiar to spin-stabilized spacecraft is that of energy dissipation by flexible
structures. Explorer I (tig. 4) had flexible whip antennas which provided a mechanism for
unanticipated energy dissipation through structural damping. Since the spacecraft was
initially spin stabilized about a minimum moment-of-inertia axis, the energy loss
produced an unstable motion of the vehicle and resulted in the spacecraft finally rotating
about the maximum moment-of-inertia axis.

/ initial spin axis

Angle of
precession

Whip antenna

Figure 4. — Explorer i.

2.115 Control Surfaces

Control surfaces can also exhibit frequencies which cause control-system response. For
example, during ground checkout, the Little Joe II/Apollo test vehicle encountered an
interaction caused by a coincidence of a control-surface natural frequency and the
frequency of the rate-gyro package (table I). Entry vehicles may also exhibit similar
problems. A severe inflight vibration was observed on the X-15 rocket research aircraft
(fig. 5) where vibration of approximately 13 Hz occurred at 52 000-m (170 000-11)
altitude and a dynamic pressure of 4788 N/m? (100 Ib/ft? ). The vibration was limited in
amplitude because of the rate limit of the control-surface actuator and could be stopped
by reducing stability augmentation system (SAS) gains. It was determined that the first
bending-mode frequency of the X-15 horizontal tail surfaces was approximately equal to
a resonant frequency in the SAS. The problem was rectified by using a notch filter in the
SAS (ref. 18).

12



Speed brake
Movable vertical

tail (yaw control)
Elevon

(pitch and
roll control)

Figure 5. — X-15 rocket research aircraft.

2.1.1.6 Lifting Surfaces

Lifting surfaces such as the wings and tail surfaces of the X-15 aircratt may be used
extensively on entry vehicles. These surfaces are susceptible to aeroclastic phenomena
including tlutter, divergence, control-surface reversal, control-surface buzz. coupled servo
flutter, buffeting. and panel flutter. Analytical techniques developed to study aeroclastic

problems of aircraft are generally applicable (ref. 10).

2.1.1.7 Other Structural Elements

The presence of joints and other interfaces can radically change the flexibility
characteristics of the structure. For this reason, joints are either made as stiff as practical
so that the presence of the joint does not adversely aftect the overall vehicle stiffness, or
the joints are designed with known characteristics which can be accounted for in
subsequent analyses. One method of achieving the latter requirement is to design joints
which can be effectively analyzed by linear methods or which can be readily linearized. A
potentially serious problem which occurred on an early Atlas D AIG vehicle is indicative
of the attention which must be paid to joints. Near the end of first-stage flight, an
unstable first-mode oscillation started which was terminated by staging just as amplitudes
were approaching structural failure. Investigation showed the cause to be excessive

free-play in entry-vehicle latches.
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Structural integrity of the Apollo Command and Service Module/Lunar Module docked
configuration (fig. 6) was a basic concern in the design of the autopilot (table 1). The
attitude-control torques of the gimbaled service-propulsion-system engine were capable of
exciting the bending modes to amplitudes which cxceeded the strength of the docking
latches. Although the autopilot design was hampered by large uncertainty in the predic-
tion of structural parameters, the autopilot was able to stabilize all spacecraft vibration
modes so the structure would not be subjected to excessive dynamic oscillations.

Slop or free-play is sometimes introduced in joints and interfaces to allow for thermal
expansion. Free-play, for example, was designed into the flap hinges and actuation
connections of the SV-5D Prime Vehicle. However. in this instance, excessive tree-play

resulted in limit-cycle oscillations of the surface.

In addition to joints, characteristics are determined for secondary structure such as
fairings, heat shield, payload supports, and shock mounts which can have significant
effect on the mass and stiffness distribution of the vehicle. Whenever practical, these
structures are designed using linear methods. Tests are usually conducted to verify the
analysis and to determine the structural characteristics it the design is not readily

amenable to analysis.

Docking tunne!

\ Command module

\ Service module

\ Gimbaled SPS engine

Figure 6. — Apollo command and service module docked with;lunar maodule.
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2.1.2 Use of Control System

Structural design can be influenced in a beneficial manner by the control system which
can be used to manage loads and to damp structural oscillations. Generally. launch
vehicles are designed to use the control system to add damping to the modes and to limit
the load levels. Spacecraft control systems, however. are designed to avoid interaction
with the flexible-body modes. To date. entry vehicles, like aircraft and spacecraft. have
been designed to negate the effects of structural tlexibility on the control system.
However. load alleviation and mode stabilization techniques. such as developed for large
flexible aircraft, are being considered for future entry vehicles — for example, the pro-
posed space shuttle.

2.1.2.1 Trajectory Design

Trajectories or flight paths developed for each vehicle mission are used to determine
structural loads for both nominal conditions and dispersions from the nominal caused by
environmental factors and manuevers. For example, launch-vehicle trajectories are
selected to minimize the dispersion effects of winds and maneuvers on the trajectory
(ref. 19); entry-vehicle trajectories consider excursions within the entry corridor and
maneuvers during atmospheric flight (ref. 20). Since a vehicle’s trajectory is usually
determined by the guidance system and is maintained by the control system. flight paths
can be chosen (with due regard to other mission requirements) that minimize external
loads induced by the environment and vehicle maneuvers, and which do not command

control forces that exceed structural limits.

2.1.2.2 Load Control

The type of control law selected and implemented in the control system can reduce the
loads imposed on the structure. The control laws are usually selected for rigid-body load
considerations and can have a significant effect on structural loading on the vehicle.
Control laws are selected for launch vehicles, taking the relative contributions of
aerodynamic and thrust forces to the bending moments into consideration (ref. 19). For
example, a load-reliet control loop using a lateral accelerometer feedback was
implemented on the Tital 111-C and Saturn IB to reduce the vehicle angle of attack and
the associated peak structural loading caused primarily by wind shear. The load control
loop of Titan HI-C was designed to improve the rigid-body performance; however, in
addition to sensing rigid-body accelerations, the accelerometer aiso sensed structural
vibration signals, which necessitated heavy filtering of this channel. This type of load
control, using the normal control system, can be quite effective in reducing maximum
bending moments (in the vehicle center region) caused primarily by rigid-body and
first-mode response. However, bending moments near the ends of the vehicle can be
influenced to a greater extent by higher mode response. These moments can be
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effectively controlled only by using additional control-force generators and additional
sensors such as used on the B-52 (ref. 21) and XB-70 (ref. 22).

2.1.2.3 Mode Stabilization

Modal vibrations of flexible vehicles can cause significant structural loads. Interaction of
the control system with the elastic oscillations adds energy to the total system and can
eventually cause a control-system instability or structural failure. To prevent such
problems, the control system, modified through the application of filters, compensation
networks, sensor blending techniques, etc., can be virtually uncoupled from the structural
oscillation.

However, regardless of the decoupling, large applied loads can still produce deformation

of the structure in its various elastic modes. For this situation, the control system can be
designed so that control forces are phased to remove energy from the modes. This

method is called phase stabilization and is the principle employed in mode-stabilization
control systems. Launch-vehicle control systems, such as those used for the Saturn V
(ref. 19), commonly employ both decoupling and mode stabilization. Phase stabilization
was employed on the Apollo Command and Service Module/Lunar Module docked
configuration to achieve system stability. The experience gained on the B-52 (ref. 21) and
XB-70 (ref. 22) mode stabilization systems is being applied to proposed entry vehicles
such as the space shuttle.

2.2 Determination of Structural Characteristics

Structural characteristics of the vehicle are usually determined and then used in separate
steps: (1) a mathematical model of the structure is developed and analyzed to yield the
basic structural information, and (2)either the mathematical model or structural
characteristics derived from it are used in conjunction with control-system dynamic
equations to evaluate potential interactions.

2.2.1 Mathematical Model of Structure

Selection of a structural model adequate to predict interaction with sufficient accuracy
for structural design depends upon the vehicle configuration and the complexity of its
dynamics. This model accounts for all significant dynamic phenomena and typically
includes higher frequency vibration modes. cross coupling. input data tolerances. flexible
internal subsystems, and actuator dynamics. Dynamic loads are investigated to determine
the effects of structural amplitude and frequency inputs on equipment, nonstructural
systems attached to the structure, and the attitude control system.

Generally, the structural model is made as simple as possible while meeting the
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requirements of the control-system designer. In most cases. the model development is an
iterative process in which the model is updated during design to satisfy accuracy
requirements and to improve correlation with test data. Many space vehicles have at least
two orthogonal planes of symmetry for the main load-carrying structure for which a
coplanar (two-dimensional) model suffices. However, asymmetries of internal structure
and major components may cause coupling of the coplanar modes of the main
load-carrying structure. If two of these modes have similar characteristics, even a small
asymmetry can produce significant coupling. If coupling of this nature is anticipated, a
coupled (three-dimensional) model may -be required. This model is also desirable if
follow-on analyses can use a three-dimensional vector and if the extra refinement is
warranted. A three-dimensional model may also be required if the characteristics of the
structure acting in one plane cannot be accurately predicted when restrained to acting n
a single plane. Evolution of the mathematical model for the Saturn V launch vehicle
described in references 23 and 24 is illustrated in figure 7. showing the increase in

complexity to meet dynamic requirements.

Usually, some of the important parameters for evaluating an interaction problem such as
vibration mode frequencies, shapes (including slopes at the sensor locations), and
damping ratios can be defined during the design of a space vehicle. This type of
information is generally sufficient for generating a linear model of the structure for
control-system analysis and simulation (ref. 3). The model also includes. where
appropriate, characteristics of local structure such as sensor mounting brackets, engine
support structure, actuators, and backup structure and joints. The local structure may be
involved in dynamic coupling problems such as between actuator and engine dynamics in
engine resonance or between lateral and torsional motion, as experienced by boomis
during thermal flutter. In addition. nonstructural information such as distributed airloads.
propellant slosh frequencies, and engine inertias are included with the model, particularly
it this information is required to determine the extent of dynamic coupling present. For
example, studies using quasi-steady aerodynamics have shown that the aerodynamic
forces may couple rigid-body and flexible-body dynamics. The potential of this form of
coupling is particularly cvident for large launch vehicles in which the lower vibration
frequencies approach rigid-body frequencies, and for launch vehicles carrying winged
payloads. The result may be a vehicle with resonant frequencies that undergo substantial
and irregular variations along the trajectory, tending sometimes to approach one another
rather than increase unitormly with time as propellant is expended (ref. 25).

Aerodynamic loads may also couple with the structural characteristics in entry vehicles,
especially if wings and tail surfaces are used. resulting in aeroelastic problems similar to

those of aircraft (Section 2.1.1.6).

Another example of a related interaction which may affect structure and control-system
interaction is that of a sustained oscillation involving the coupling of the space-vehicle
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longitudinal modes and the propulsion system, commonly referred to as pogo. The
phenomenon has been observed on the Thor, Titan 11, Atlas, and Saturn V launch vehi-
cles (e.g., refs. 26 and 27). Although pogo is basically divorced from control-system
interaction, interaction with control systems may occur if strong coupling of the lateral
and longitudinal structural modes is present which can convert pogo oscillations to lateral
motion at control-system sensors, such as occurred on the Saturn V (table I and ref. 28&).

2.2.1.1 Mass and Stiffness Distribution

The basic methods of formulating mass and stiffness distribution are reviewed in
references 3 and 29. Generally, a tinite-element approach, using a matrix notation such as
the NASTRAN-computer-programmed structural analysis (ref. 30), is used to formulate
the stiftness distribution. The mass distribution is usually characterized using the
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lumped-mass method. although use of the consistent-mass method (ret. 31) is increasing.
Both the mass and stiffness distributions are developed for the same nodal network.

Mass and stiffness representations for launch vehicles and spacecraft may range from a
beam arrangement to a complex three-dimensional network. For example. a nonuniform,
loaded. lumped-mass beam was adequate for the Atlas series of launch vehicles, whereus a
three-dimensional finite-element model was required for the Saturn V vehicle. The Ranger
spacecratt was modeled by four masses connected by hinges with linear torsional
restraints; the OGO spacecratt was modeled as a lumped-mass system with each antenna
represented by a single mass: and the RAE satellite was modeled as a lumped-mass system
with each antenna consisting of eight masses. The docked Apollo Command and Service
Module and the Lunar Module were analyzed with a three-dimensional finite-element

model.

Because of limited experience with flexible entry vehicles, it is ditficult to generalize the
mass and stiffness formulations best suited to these vehicles. It is to be expected,
however, that finite-element techniques will be used extensively, particularly for
liftting-body and winged configurations. Consistent-mass techniques will be used as
computer programs become available. However, one of the first piloted entry vehicles. the
X-15. was designed with a beam model and lumped masses. A finite-element analysis was
used for analysis of the X-24 lifting-body vehicle.

Mass distribution is an extremely important consideration for spin-stabilized spacecratt
designed to be symmetrical about the spin axis. For dual-spin spacecraft tor which
symmetry may be difficult or impossible to achieve. such as Intelstat IV, an accurate
representation of the mass distribution is necded. Similarly, the center of mass of
spacecraft that perform thrusting maneuvers is required to determine torque levels and to
analyze the spacecraft stability (ref.32). In addition, for spacecraft using liquid
propellants to develop thrust, such as for Lunar Orbiter and Apollo, the possibility of a
“running” center-of-mass condition is investigated. Center-of-mass travel is determined

for entry vehicles controlled within the atmosphere.

Special consideration is given to large component masses that may have significant
dynamic characteristics of their own such as propellants, gimbaled engines. control
surfaces, and payloads. Two methods of considering the dynamics of these masses have
been used (ref. 24). In one method a separate model, apart trom the basic model for the
remainder of the space vehicle, is developed to evaluate the dynamics of the component
masses: and then an equivalent lumped-mass representation is coupled to the basic
space-vehicle model. In the other method, mass and stiffness characteristics of the
components are included directly in the space-vehicle model.

Both methods have been used in analyzing propellant slosh. For the Atlas, Thor, and
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X-15, the slosh dynamics were determined separately, whereas they were incorporated
directly in the structural model for the Titan vehicles. In initial studies for the Saturn Vv,
the slosh dynamics were included in the structural model: however. later studies
determined the slosh and structural dynamic characteristics separately (ret. 24). Most
analyses for launch vehicles as well as for the Apollo Command and Service Module have
been conducted with the gimbaled engine as a degree of freedom to be computed
separately.

Local structure may influence the overall dynamic characteristics or directly affect the
control-system equipment; therefore, the mass and stiffness distributions are defined
separately for actuator linkages and backup structure, sensor mounting brackets, engine
support structure, joints and other interfaces, and integral structural parts of the control
system. In addition, for entry vehicles using lifting surfaces such as wings, the torsional
characteristics of these surfaces are important. (Local-component effects have been
discussed in Section 2.1.1.)

The ctfects of temperature on structural stiftness are usually included in the analysis to
determine structural characteristics. This may be accomplished by applying a constant
temperature across an entire section of the vehicle, or by accounting for discrete
temperatures and temperature gradients at lumped-mass stations or at node points.
Temperature effects are normally included in analyses of launch-vehicle structural
dynamics. Launch vehicles are subjected to low temperatures because of the cryogenic
propellants and to high temperatures because of inflight aerodynamic heating. Spacecraft
are subjected to low temperatures of the space envirenment but are more susceptible to
extreme temperature gradients. Entry vehicles are subjected both to high temperatures
and high-temperature gradients caused by acrodynamic heating, particularly on lower
surfaces and leading edges.

2.2.1.2 Vibration Modal Data

The generation of vibration modal data. including mode shapes. frequencies. generalized
masses, and structural damping ratios, is discussed in references 3, 10 to 12, and 33 to 35.
These data may be used in response analyses of linear structure. or tor comparison with
test data to verify the mathematical model. For vehicles using active control systems, thut
is, systems incorporating sensors, compensation networks, control logic, actuating
devices, and an onboard energy source, it is essential to determine modal frequencies,
damping ratios, and the slopes and deflections at sensor locations. If the structure is used
as part of a control system which does not use active elements (e.g.. the extendible boom
of a gravitationally stabilized spacecraft) then data are obtained on its total deflections
and damping ratios. For certain spacecraft, energy dissipation due to structural flexibility
is of prime importance and vibration modal data are not required (Section 2.1.1.4).



Modal data may be furnished to the control-system designer as tabulated data, transfer
functions (it the structure is linear), or modal gain characteristics. Modal gain is defined
directly from the dynamic characteristics. For launch vehicles, it is defined as the modal
deflection at the engine gimbal, multiplied by the modal slope at the gyro location and
divided by the generalized mass (ret. 1, Appendix B, equation B-7). The amount of
uncertainty or tolerance in the duata is normally obtained by performing a parametric
study on a digital “or analog computer. From this study, the sensitivity of the structure to
variations of parameters such as mass and mass distribution, structural elements, and

structural arrangement is determined.

Results of the parametric studies are compared to hardware tests. It the studies become
unwicldy, a Monte Carlo simulation of the system is performed in which the values ot all
system parameters are randomly selected within their tolerance bands. This type of study
was used tor the Poseidon missile, the Apollo Lunar Module and the Surveyor spacecratt.
For the Saturn V., tolerances were obtained directly by comparing the results of full-scale
vibration tests with analytical results. The etfects of ditterences in the tull-scale test

article and the flight vehicle on the tolerances were then estimated.

The tolerances placed on the structural data depend upon the accuracy requirements
established tor the control system. [f these requirements for pointing accuracy. rotational
rates, etc., are high, then it may be necessary to update the structural model. and generate
special local models to achieve a closer tolerance range on the structural dynamic
characteristics. Following this iterative procedure, it may be necessary to modily or
redesign the control system to prevent interaction problems within the tolerances

provided.

For those methods of structural vibration analysis that depend on modal vibration data,
the solution is truncated to include those modes of significant interest to the control
system. Selection of the number of modes to be retained in the solution varies
considerably with the application. The method of selection is not well defined, and

depends primarily on engineering judgment.

The accuracy with which structural dynamic parameters can be predicted is strongly
dependent on the model used. For example, the trequencies of the first four vibration
modes of the Saturn V launch vehicle during the first-stage boost were predicted within
+4 percent. The modal gains for these modes were predicted within margins ranging from
+3 dB on the first mode to £8 dB on the fourth mode. For the second-stage boost,
frequency prediction error was +3 percent on the first mode, £ 13 percent on the second
mode, =4 percent on the third mode, and 50 percent on the fourth mode. The model
was refined after vibration testing and then the predictions were significantly improved.
Prior to test, modal-gain prediction accuracy ranged tfrom +4 dB on the first mode to £12
dB on the fourth mode (ref. 36).
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Modal characteristics are generally determined independent of time: however, when the
vehicle mass characteristics change appreciably during flight. as for launch vehicles, a
“time slice” analysis is employed wherein a complete modal analysis of the structure is
performed at periodic intervals (ref. 2). For large-scale computerized solutions of
launch-vehicle vibration model data, it is common practice to determine the modal data
at frequent intervals (such as at 10-second intervals for the uprated Saturn | vehicles). For
spacecraft and entry vehicles carrying propellants, modal calculations are pertormed for
various propellant loadings and for significant events such as staging. docking. maximum
aerodynamic loading. maximum heating rate. and appendage deployment.

Structural damping is a nonlinear function of amplitude and cannot be calculated. Values
for modal damping ratio may be based on past experience, but linearized modal damping
estimates are usually based on test measurements. Proportional damping models are
usually used: that is, an equivalent viscous damping factor is applied to each mode.
Representative values of damping and modal frequencies of launch vehicles are presented

in table 11.
2.2.2 Structural Interaction Analysis

Consideration of instabilities associated with coupling between the structure and the
control system is closely related to the vibration response problem. In most cases the
structural model used for response analysis is appropriate for use in the control-system

analysis, at least in the lower frequencies.

The structural dynamic.model is used to obtain the dynamic equations which together
with rigid-body motion describe flexible-vehicle motion. These equations are used
together with the control-system equations to describe the total dynamic system. Because
of the wide variation in vehicle structural configuration, several methods of modeling the
space-vehicle dynamic system have evolved. Four major methods are used in attitude
control analysis: energy-sink, discrete-parameter, modal-coordinate. and hybrid-coordinate
(ref. 1). Equations of motion for the structural model, whether distributed or discrete.
may be formulated by integral or differential equations, or by energy methods (refs. 1. 3.
10. and 12). Solution of the equations is discussed in reference 29.

For some spacecraft. the control system does not contain active control elements:
instead, the control functions are performed by an integral part of the structure
(e.g., gravity-gradient booms). In this case, analysis of the vibration response of the
structural model provides a study of potential interaction. For most space vehicles,
however, the control systems are active and are described by a separate model. The forces
generated through the control system are forcing functions or a source of energy external
to the structure as illustrated in Appendix B of reference 1. The analysis of potential
interactions for active systems is determined by control-system stability analyses (refs. 1
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TABLE II. — LAUNCH-VEHICLE VIBRATION MODAL DATA
(FULLY-LOADED CONFIGURATION)

Closed-loop Damping
rigid-body Vibration Frequency, Hz ratio
Vehicle frequency, Hz mode (a) (b)
Atlas/Able—4B 0.40 First 2.7 -
Second 6.3 -
Third 12.7 -
Atlas/Agena/OAQ 0.40 I-irst 3.6 0.007
Second 7.2 -
Third 8.2 0.016
Fourth 9.5 0.012 2
Fifth 15.0 0012 [ &
Atlas/Centaur/ 0.42 First 2.0 0.019
Surveyor Second S.2 0.013
Third 6.9 0.019 J
Thor/Delta or 0.20 First 2.2 0.007 )
Agena FFourth 17.0 0.010 2
Titan 111-C 0.25 First 1.8 0.008 § E
Stage 0 Second 2.9 0.010 | =
Third 5.4 0.010 | =
Fourth 6.5 0.015 )
Upgraded Saturn | First 1.7 0.008 )
(SAD—-6) {(dynamic Second 3.3 0.009
test vehicle) Third 4.1 0.014 \ %
Fourth 5.0 0.008 =
Fifth 5.6 0.006
Sixth 7.2 0.007 )
Upgraded Saturn | 0.15 First 1.1 0.005 )
(AS 20%5) Second 22| 2 0005 | 2
Third 38 | B 0.005 \ =
Fourth 58 (32 0.005 [ £
Fifth 84 | S 0.005 | £
Sixth 10.0 0.005
Saturn V/Apollo 0.20 First 1.0 0.005
Second 1.7 0.007 2
Third 23 0.006 [ &
Fourth 3.0 0.010

aThese frequencies are free-free; test values are corrected from test support conditions.

bDamping ratio is the ratio of actual damping to critical damping. Test values are from decay records.
Estimated values are extrapolations of test data on similar vehicles.

and 2). Of particular interest to the structural designer are those loads generated by the
control system which can affect the structural integrity of the space vehicle. These loads
include those imposed by an engine hard-over condition caused by a malfunction;
transients due to switching to a redundant control system: engine ignition and other
propulsion transients; docking, staging, and flap deflection: control response to winds;
control response to guidance commands; and response to control-system-induced
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limit-cycle oscillations. In addition, reduction in structural loading such as achieved by
load-relief control systems in launch vehicles (ref. 37) and by mode stabilization
techniques (ref. 38) can be studied in the simulation of the structure and control-system
interaction.

2.3 Tests

Tests are conducted throughout the design and development of every vehicle. They vary
in detail and extent with each vehicle but are generally used for one or more of the
following purposes:

. Verification of mathematical model

. Determination of vibration modal characteristics

. Establishment of tolerances

® Determination of characteristics of nonlinear structure
. Determination of structural damping

] Veritication of interaction analyses

2.3.1 Structural Tests

Generally, full-scale model or prototype test articles are used for verification testing of
structural mathematical models. However, subscale models have been used. such as the
one-tenth scale model of Saturn V (ref. 24) and the one-fifth scale model of Saturn SA-1
(ref. 39) to develop the mathematical models and to support tull-scale testing.

Test and analytical results are compared to establish tolerances. The test data can be
repeated only within certain tolerances. For example, results obtained after unstacking
and restacking launch vehicle stages may vary. In addition. certain tests may not be
repeatable because of such causes as slippage in joints and changes in preloads.

Tests are also used to determine data which cannot be obtained or confirmed through
analysis such as data on local structure and joints which may be nonlinear. In many cases,
vehicle sections are used as test specimens to determine local structural characteristics.
Typical of these are engine gimbal tests for testing the engine and its actuating equipment
and backup structure (ref. 40), tests on solar panels, and tests of lifting surfaces.
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Both static and dynamic tests are conducted to obtain structural data. Static tests are
used to determine the force-deflection characteristics of the structure and may be used to
obtain influence coefticients for calculating vibration modal data (ref. 10). However, the
influence coefficients are usually not determined if vibration tests are to be conducted.
Other tests include environmental testing (e.g..acoustic and thermal), appendage
deployment, static balancing and determination ot weight. moments of inertia, and center
of mass (ref. 41). ﬁynamic balancing is conducted on many vehicles and is particularly

important for spin-stabilized spacecraft.

Ground vibration tests are used successfully to determine the vibration modal
characteristics and structural damping of the vehicle. Values of structural damping cannot
be calculated and are usually obtained from measurements made on actual vehicle
structure (table I1). Local structural characteristics may also be investigated by vibration
testing. One difficulty in vibration testing is the simulation of inflight free-free modes.
Suspension systems of varying types are used such as the spring systems used for Surveyor
(ref. 42), Gemini (ref. 43). and Apollo and a hydraulic support used for SaturnV
(ref. 24). Electromagnetic shakers are usually used to excite the vehicle. Many of the
spacecraft appendages designed for a gravity-free environment are extremely flexible and
thereby difficult, if not impossible, to test in a 1-g environment. An example is the testing
of the solar arrays of SERT 11 which required a special test rig (ref. 44). Vibration testing
of entry vehicles is accomplished by well-developed aircraft techniques (ref. 10).
However. the severe thermal environment is very difficult to simulate and usually tests

which include thermal inputs are conducted on segments of the total vehicle.

In addition to modal frequencies, vibration testing is also used to determine shapes and
damping ratios. slosh frequencies and damping. Measurements ot the characteristics at

control-system sensor locations is particularly important.

2.3.2 Structure and Control-System Tests

Dynamic tests are often conducted with the control system operating closed-loop to
demonstrate the dynamic performance of the control system. The results are sometimes
difficult to evaluate because of the absence of forcing functions present during flight,
such as acrodynamics and engine thrust. However, this test has been useful for examining
control servo feedback problems on entry vehicles using control surfaces. Flight tests of
the space vehicle may be conducted to ensure the absence of undesirable interac-
tions—particularly if the space vehicle is manned. Interactions on launch vehicles are
normally inferred from other data obtained during the flight test program. Intlight
vibration tests have been conducted on manned spacecraft, namely the docked
configurations of Gemini-Agena and Apollo Command and Service Module/Lunar
Module. Excitation was provided on Gemini by attitude-control thrusters and on Apollo
by the main thruster engine (ref 1). Inflight vibration tests may be conducted on entry
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vehicles to verify ground test results; however, this testing on winged vehicles is also
conducted to verify the absence of ftlutter and other undesirable aeroelastic
characteristics.
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3. CRITERIA

Space-vehicle structure shall not interact with the control system in any manner that is
detrimental to the vehicle or its mission performance, or, if the mission is manned,
compromise ciew safety. Space-vehicle structural design shall optimize structure with
respect to structure and control-system interactions. Component structure shall be
designed to minimize undesirable interaction. Where feasible, structural design shall
incorporate the more cfficient structure permitted by control-system techniques which
provide maximum benefit from structure and control-system interaction. Structural
characteristics shall be determined and a mathematical model of the structure formulated
as needed for an analysis to predict structure and control-system interaction adequately.
Tests shall be conducted as necessary to determine and verity the structural character-
istics used in the analysis and the predicted interactions.

3.1 Design to Optimize Interaction

Critical space-vehicle structure that interacts with the control system shall be designed to
minimize undesirable interaction. At least the following structure shall be considered in

such design:
. Sensor mounts
o Actuator linkages and backup structure
o Engine support structure and linkages
° Appendages
° Control surfaces
. Lifting surfaces
. Joints
e  Payload support structure

] Extendible booms

3.2 Determination of Structural Characteristics

The form and amount of structural data required to support control-system analyses shall
be determined. Uncertainty limits (tolerances) of structural characteristics shall be
"determined and specified.
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Pertinent structural characteristics shall be obtained and used to formulate mathematical
models with sufficient detail and complexity to describe the structure in terms of the
characteristics pertinent to the structure and control-system analyses. The analysis and
the mathematical model shall account for the following. as applicable:

. Structural stiffness distribution

. Structural mass distribution

] Structural mode shapes, frequencies. and generalized masses or gain factors

° Structural damping

. Structural and damping nonlinearities

] Distributed aerodynamics

° Temperature distribution and heating rates

) Propellant slosh dynamics

° Local deformations

3.3 Tests

Ground and flight tests shall be conducted to verify estimates and assumptions made
during the definition of structural characteristics and to ensure that interaction effects do
not impair operation of the dynamic system. Whenever feasible, the ground-test and
flight-test data shall be obtained early in the development cycle to benefit design
decisions. Structural characteristics which significantly affect the control system shall be
veritied by test in all instances where nonlinear structure is designed. If the space vehicle
is manned, the flight test shall also demonstrate crew safety.
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4. RECOMMENDED PRACTICES

Coordination should be established between the structural and control-system groups,
and with other technical disciplines including aerodynamics, guidance, propulsion, and
testing, so that all may actively participate in selecting the best overall design. Interchange
of information and intelligent compromise on all parameters affecting interaction should
occur throughout gpace-vehicle development. To ensure that a proper interface between
design groups is maintained, it is recommended that all relevant data be documented in a
common data book for present and future reference. This document should be
continuously updated to reflect current data.

4.1 Design to Optimize Interaction

The following subsections contain recommended practices which should be followed for
design of the critical structural components listed in Section 3.1 and for achieving
structural design benefits using control-system techniques to optimize structure and

control-system interaction,

The structural-parameter values and their tolerances required tor control-system design
should be made available to the control-system engineer. To facilitate the determination
of the structural parameters and their tolerances, and to lend confidence in their
prediction, the structure, where feasible, should be of simple design and be linear or
capable of being linearized. The structural data and their estimated accuracy should be
reevaluated as the design and test phases progress.

4.1.1 Structural Design

Structure which critically influences interaction between the vehicle structure and control
systems should be designed to (1) avoid excessive deflections which could impair control
alignment and function, and (2) effect a stabilization between structural and control-
system modes. A recommended technique to achieve these goals is to design such
structure to be as stift as practical to minimize deflections and to keep structural
frequencies high, relative to the control-system bandpass, with due regard for higher
frequency harmonics. The use of linear structural elements is recommended, whenever
appropriate, to simplify the analysis and to lend confidence in the results. Adequate
structural damping should be provided, particularly for vehicles operating in a space
environment where acrodynamic damping is not present, to damp oscillation within time
periods deemed reasonable by the control-system designer.
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4.11.1 Sensor Mounting

To prevent frequency resonance problems, sensor mounting structure should be stiff
enough to produce a natural frequency at least twice that of the sensor bandpass,
whenever practical. Sensor mounts should be designed to avoid erroneous structural
inputs into the sensor signal. When deformation caused by gross strain distribution in the
vehicle could result in undesired inputs to sensors mounted in a single gyro package
located on one neutral axis, the pitch and yaw gyros should be mounted separately on the
respective neutral axes of the vehicle.

41.1.2 Actuator Linkage and Support Structure

The interaction analysis should include the dynamics of actuators used for moving
control-force equipment, and the dynamics of the actuator linkages and backup structure
to which the actuators are attached. A nonlinear model is recommended for the actuator
dynamics. Hydraulic fluid compressibility, hose restraint, gimbal friction, support
structure flexibility, and engine flexibility should be accounted for as necessary (ref. 45).

41.1.3 Engine Support Structure and Linkage

Harmonic resonance of the engine and the structure should be avoided to prevent

feedback between the structure and the control system. Engine inertias should be
determined to enable calculation of possible detrimental effects to the control system

such as ‘‘tail-wags-dog” (ret. 46). The engine support structure should be as stiff as
practical so that the resonant frequency of a gimbaled engine can be kept above the
“‘tail-wags-dog’ frequency.

4114 Appendages

Thermal bending of extendible booms caused by solar radiation and pressure should be
reduced by using:

° Modified booms which include closed cross sections affording higher torsional
rigidity; perforations or wire-mesh construction to achieve rigidity and
eliminate extreme temperature gradients across the boom; and black interiors
to increase the radiation absorption properties to provide uniform temperature
distribution

. Highly reflective exterior surfaces such as silver plate polished to a high luster
° A boom motion damper at the boom root, along its length, or at the boom end

mass
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. As short a boom as possible

Additional recommended practices for extendible booms are given in reference 10.

The flexibility characteristics of such appendages as antennas and solar panels and their
attachments should be considered in dynamic analyses. The possibility of energy
dissipation through flexible appendages is important to spin-stabilized spacecraft and
should be determined. Specific recommendations for consideration of energy dissipation
are given in references 1 and 47.

4.1.1.5 Control Surfaces

Harmonic resonance of control-surface natural frequencies and sensor systems should be
avoided to prevent feedback between the structure and the control system. This should
be accomplished by close coordination between the structural and control-system
designers, which when combined with a cooperative effort can result in optimum
compromises between structural and control-system frequency constraints.

4116 Lifting Surfaces

Fixed and movable (including engine deflector vanes) lifting surfaces should be
investigated for aeroelastic phenomena. Procedures used to determine aircraft aeroelastic
characteristics are generally applicable (ref. 10).

Specific recommendations for various aeroelastic problems are contained in the following
references:

° Flutter, buzz, and divergence (ref. 48)

. Buffeting (ref. 49)

] Panel flutter (ref. 50)

4.1.1.7 Other Structural Elements

Unless thermal expansion requires the introduction of slop, it is important that
primary-structure joints and interfaces be as stiff as possible to minimize their effects on
the flexibility of the structure. The design of joints, fairings, and payload support
structure should be readily analyzed by linear methods or should be easily linearized.
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4.1.2 Use of Control System

The structural analyst should advocate using guidance concepts and control-system
techniques and capabilities beneficial in the structural design. Where such concepts and
techniques prove feasible. the structural designer should design the structure to the
reduced loads estimated by these techniques. if such design is advantageous. These
capabilities and techniques include (ret. 19):

. Trajectory design - Design trajectories which minimize disturbing loads.

. Load Control  Maintain satisfactory vehicle bending moment levels by control
ot acrodynamic forces, moments, and thrust vectors. Relieve structural loads
by means of a load-relief controt system (ret. 37).

° Mode Stabilization — Reduce control-system response to structural vibration
by gain stabilization. Increase damping of vibration modes by phase stabiliza-
tion or by specially designed control systems. Reduce the possibility of
structural feedback and minimize closed-loop effect of engine alignment error
by proper selection of control trequencies.

4 2 Determination of Structural Characteristics

Pertinent structural-parameter values and their tolerances should be determined and
supplied early in the design for the mathematical model used in analysis of the
structure/control-system interaction. To facilitate the analytic determination of structural
characteristics and their tolerances, the structure should be designed. where feasible. to be
linear or capable of being linearized. For complex and/or nonlinear structure. the

parameters and their tolerances should be determined by suitable tests (Section 4.3).

4 2.1 Mathematical Model of Structure

Generally, the model tor preliminary design should be the simplest possible model which
can be used to cvaluate the overall vibration characteristics of the vehicle. A
two-dimensional (coplanar) model based on a lumped-mass representation of the vehicle

configuration should be used for the initial model, it practical (ref. 2).

As the design progresses, the model should be improved. as necessary, to meet
control-system accuracy requirements. A coupled or three-dimensional model should be
considered if:

. Secondary asymmetries in internal structure and major components are likely
to cause coupling of coplanar modes of the primary structure
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. Follow-on analyses need a three-dimensional vector
. Extra refinement can result in significant improvement in accuracy

. Accurate coplanar results cannot be obtained by restraining the structure to act

in one plane

Mathematical models should be verified by appropriate tests. If it is determined that some
details of the model are not representative, the model should be modified to account for
observed ditferences between structural characteristics determined by test and those used
in the model. More complex models should be compared to simpler ones which have been
verified because complex models (e.g., three-dimensional finite-clement) present com-
putational problems of computer capacity, numerical accuracy. and divergence. It is
recommended that highly sophisticated models not be developed until less complex
models have been verified for use as a reference. In some cases. it may be expedient to
maintain both simple and complex models, using the simple model for interim studies and

the complex one for final verification.

The structural model should be capable of determining vibration mode shapes and
frequencies (ref. 3). It should have the capability for evaluating the effects of structural
damping ratios. For example, the structural dynamic response of booms and other lightly
damped structures should be determined tor zero damping as well as for nominal
damping. Either the verification model or special component models should be capable of
allowing the determination of the structural characteristics of sensor mounting brackets.

engine support structure. actuators and backup structure. and joints and interfaces.

The coupling effects of large component masses such as propellant dynamics, engine
dynamics, and major component dynamics, should be evaluated either in the verification
model or by special models such as presented in references 45 and 51 to 53. In particular,
the possibility of engine and actuator dynamics coupling with the flexible structure
should be checked. Dynamics of these large masses can cither be included in the vehicle
structural model or modeled separately and their dynamic effects coupled to the basic
vehicle in the dynamic response and stability analyses. Although either method is
acceptable. care should be excercised in the latter method that the same mass is not

included twice.

For control-system purposes, it has been found convenient to model propellants and
gimbaled engines separately, to determine their dynamic characteristics, and then couple
them to the main vehicle (ref. 2). If eftects of a flexible vehicle component on overall
dynamics appear to be important, the component dynamics should be added as separate
degrees of freedom and a tolerance analysis conducted on the component eftfects. For
example, this procedure simplities the detinition of slosh stability margins. In addition, if
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slosh frequencies are changed abruptly. as when the failure of an engine causes a loss of
thrust. the propellant dynamics can be reevaluated without having to rerun the entire
structural analysis. In analyzing control engines separately. local deformations caused by
the engines and actuators will not appear in the low-frequency modes normally used in a
stability analysis. Therefore, high-frequency modes should be included in addition to the
engine-rotation degree of freedom to produce low-frequency modes of the total system as

described in reterence 24

Analysis of launch vehicles with winged or long flexible payloads should account tor the
coupling effects of steady and unsteady aerodynamics on the flexible and rigid-body
modes. Aeroelastic effects in launch vehicles, associated with body detormations from the
distribution of normual-force-coetficient slopes over the length of the vehicle at various
angles of attack, should be determined. Quasi-steady aerodynamics should be used to
obtain the distribution because the reduced tfrequencies for most of the common space
vehicles are approximately 0.1. In the lower supersonic region, Van Dyke Second-Order
Hybrid Potential Flow theory (ret. 54) should be used. Where this theory is not
applicable (for example, on a blunt nose), shock expansion theory may often be used
(ref. 55). It a computer program is not available, load predictions can be based on test
data tound in reference 56. When integrated force and moment wind-tunnel data are
available, they should be compared with corresponding theoretical results: the theoretical
distribution should be adjusted to eliminate any discrepancy. Recommendations for
considering aeroelastic phenomena in entry vehicles are given in Section 4.1.1.6. If the
space vehicle has significant longitudinal-lateral cross coupling, the possibility of a
control-system interaction with pogo should be evaluated. Reference 57 presents
recommendations for analyzing pogo.

Nonlinear structure should be modeled with piecewise linear elements or by using
describing functions (ref. 14). Where neither is practical. the nonlinearities should be
investigated in computer simulations using nonlinear equations or incorporating nonlinear
hardware.

4211 Mass and Stiffness Distribution

The vehicle structure should be sufticiently defined during design to ascertain structural
mass distribution. Accuracy requirements for mass and stitfness data should be
established as early as possible in the vehicle design procedure. The recommendations
presented in reference 3 for determining mass and stiffness distribution should be
followed. Inertia and stiffness matrices should be developed identically to improve
accuracy (ref. 58).

The mass and stiffness distribution of large component masses such as propellants
(ref. 59), gimbaled engines (ret. 45), payloads. and control surfaces should be determined
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as applicable. The distribution of mass for spin-stabilized spacecratt should be designed to
be symmetrical about the spin axis. Other recommendations related to gyroscopic
stiffness and the effects of disturbing torques on spin-stabilized spacecraft are found n

references 1, 32, and 47.

The mass and stiftness distribution should include local structure such as sensor mounting
brackets, engine support structure. joints. interfaces. payload supports, and extendible
booms. If the final verification model is not detailed enough to incorporate local eftects,

the latter should be evaluated separately.

The effects of temperature on structural stiffness and on slop and free-play in joints,
interfaces. and controlsystem equipment should be investigated. Two mcthods are
usually employed and are recommended: (1) multiplying by a temperature factor the
free-free stiffness matrix of a module of the structure that is affected before merging with
other modules. and (2) accounting for temperature effects on the modulus of elasticity at
cach element or node of the structural model. The first method assumes a unitorm
temperature across the entire module and gives an average effect which is less accurate
than the second method. Although more accurate, the second method has the
disadvantage of requiring the development of a new stiffness matrix as conditions change
(ref. 24). In addition to the effects of discrete temperature. the effects of temperature
gradients should be investigated.

4212 Vibration Modal Data

Procedures and methods for determining vibration modal data given in references 3, 10 to
12. and 33 to 35 are recommended. Such data, which include mode shapes. modal
frequencies. damping ratios, and generalized masses. should be compared to vibration test
results to determine the validity of the structural model. The modal data should be
furnished in a form compatible with the needs ot the control-system designer. This may
be as modal data. transter tunctions, or modal gains.

Tolerances. which should be placed on the modal data in whatever form they are
presented, should be obtained by parametric studies where it is relatively easy to identify
critical parameters and to vary those such as mass and mass distribution, structural
elements, and structural arrangement. A Monte Carlo simulation is recommended if
parametric studies become unwieldy (ref. 60). Where vibration modal data from full-scale
vehicle tests are available. tolerances based on a comparison of test and analytical results
are recommended. Where more specific accuracy requirements are not available, the
general accuracy requirements of reference 3 are recommended for modal data used in

stability analysis of control systems.

For those interaction analyses based on the superposition of vibration modes. the number
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of modes that should be retained depends on several factors (ref. 24). First. all modes
that could interact with the control system should be considered. Particular attention
should be given to those frequencies which lie within the control-system bandpass and to
those for which the controller shows a significant lag. If vibration-mode frequencies lie
close to the controlled rigid-body frequencies, coupling between them should be checked.
If possible, the controlled rigid-body frequency should be one-fifth, or less, of the first
bending-mode frequency to avoid coupling. Second, modes with shapes similar to the
vehicle’s quasi-steady deflected shape should be considered to obtain the proper static
solutions. Third, consideration should be given to include lightly excited modes which
may produce unusually large accelerations at particular vehicle stations. Characteristics
should be obtained for as many modes as necessary for an adequate description of the
structural dynamics (ref. 61).

Modes for control-system analysis should be selected on the basis of modal gain, with
convergence studies included to ensure that no important modes have been omitted.
Higher-frequency modes whose amplitudes do not produce significant modal gain may be
ignored: however, it modal gain is low because the point under consideration is a node or
antinode. slight variations in mode shape may produce significant gains. Both gain and
mode shape should be considered before a particular mode is rejected. In addition, the
effects ot configuration changes on vibration-mode characteristics should be determined.
For launch vehicles, the vibration-mode characteristics of the vehicle just prior to liftoff
should be determined as well as those for pertinent free-flight events.

When  space-vehicle mass, aerodynamic, and temperature characteristics change
appreciably during a mission, a ‘‘time-slice” analysis should be employed. wherein at
periodic intervals pertinent to control-system analysis, a complete modal analysis of the
structure is performed. Vehicle parametric values. applicable at the midpoint of each
interval, should be used to calculate vibration modes and frequencies. “Time-slice”
intervals should be short enough to reduce approximation errors to tolerable limits.
Launch-vehicle modal data should be obtained for each distinct configuration and
significant change in loading. For launch vehicles, the data should be determined for at
least the following flight events:
° First Stage
Prior to liftoft

Liftoft

Attitude program
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Maximum dynamic pressure
Engine shutdown
Separation

. Upper Stages
Ignition
Tower jettison (if applicable)
Nose fairing jettison (if applicable)
Engine shutdown
Separation

For spacecraft, modal data should be evaluated for the following flight events:

. Separation from launch vehicle

. Appendage deployment

. Staging

. Docking

. Engine ignition

. Engine shutdown

° Maneuvering

Modal data for the following flight events of entry vehicles should be determined
(ref. 20):

. Engine ignition
® Engine shutdown

. Mancuvering

37



° Deployment of drag devices
. Maximum dynamic pressure
. Maximum angle of attack

® Maximum heating rate

Values for structural damping ratio may be based on past experience; if possible,
linearized modal damping estimates should be obtained from measurements made on the
actual vehicle structure excited to expected inflight amplitudes. Experience has shown
that the damping ratio should be estimated between 0.005 and 0.01 for the first four to
six modes for launch vehicles (table II). A value of 0.01, which is used in aircraft analyses,
may be used as an initial value for structural analyses of winged entry vehicles. Because of
the diverse configurations of spacecraft, damping ratios should be chosen on the basis of
experience with similar vehicles.

4.2 2 Structural Interaction Analysis

The structural dynamic model should be compatible with the control-system model to
develop the total-system equations. Four major methods are recommended for use in
attitude-control-system analysis: (1) energy-sink, (2)discrete-parameter. (3) modal-
coordinate, and (4) hybrid-coordinate.

Solution of the equations of motion to determine the structure’s vibration response is
reviewed in reference 29. Solution of equations formulated by the modal-coordinate
method should be obtained by either the mode-displacement or mode-acceleration
method (ref. 12). The latter generally requires fewer modes to achieve the same accuracy.

Computer simulation is recommended for investigating potential interactions between the
structure and the control system. Reference 24 provides numerous practical suggestions
for computer usage in structural analysis. The complete structural model, including all
pertinent coupled effects, should be used in the simulation. The structure and control
system should be studied while the model is acted upon by input disturbances such as
winds, solar radiation, and engine vibration.

Generally. these simulations constitute an important part of control-system stability
studies. However. the structural engineer should work closely with the control-system
engineer in simulating various vehicle operating modes such as staging, docking,
deployment of appendages, and maneuvering. The simulation is particularly valuable in
studying the effects of center-of-mass variations such as those caused by the expenditures
of propellants. In launch vehicles, the expenditure is rapid and *‘time-slice” techniques
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should be used to account for variations in modal characteristics caused by mass changes.
For entry vehicles and spacecraft using propellant, the expenditures may be relatively
slow or even zero for long periods. For these vehicles, it is recommended that the
simulation studies investigate at least the following propellant loadings: full; three-
quarters. one-half, and one-quarter full; and empty.

The effect of variations in location of the center of mass on thrusting maneuvers should
be determined (ref. 32). Variations in the center of mass, relative to the aerodynamic
center of pressure on entry vehicles, can affect their stability: these effects should be
ascertained. In spacecraft, a dynamic condition (the “‘running center-of-mass” condition)
in the propellant system caused by propellants flowing from one tank to another should
be investigated.

The simulation should be used to investigate areas of structural nonlinearity. Temperature

effects may also introduce nonlinearities; therefore, the simulation should investigate
slop. free-play. or response attributed to temperature.

4.3 Tests
Tests are recommended for:
. Verification of structural mathematical model (Sec. 4.2.1)
° Determination of vibration modal characteristics (Sec. 4.2.1.2)
) Establishment of modal data tolerances (Sec. 4.2.1.2)°
) Determination ot structural damping (Sec. 4.2.1.2)
. Determination of characteristics of nonlinear structure
. Verification of interaction analyses

4 3.1 Structural Tests

The test program should begin as soon as possible to provide maximum use during the
design phase. The tests should be conducted on either tull-scale models or prototype
vehicles whenever possible except that subscale models may be used in verifying the
mathematical model and developing the full-scale test article (refs. 24 and 62). Vehicle
subsections should be tested separately, if possible, to verify their characteristics. For
launch vehicles, gimbal test stands should be developed early in the program using
simulated engine mass and inertia, and mount elasticity to evaluate the dynamic
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characteristics of these parameters, and the effects of parametric variations; also, to
determine the resonant frequency of the combined engine-actuator-support structure
(ref. 40). Other subsection tests which should be conducted. if necessary, include
force-detlection tests of spacecraft solar arrays and booms, and wings and tail surfaces on
entry vehicles.

Static-influence-coefficient tests to determine the major force-deflection characteristics of
the space-vehicle structure are recommended to verify analytically derived characteristics
(ref. 3). Similar data should be obtained for critical local areas of the structure that are
likely to contribute to interaction problems (e.g.. sensor mounts, actuator attachment
structure, joints and interfaces). Complete influence-coefficient data are not needed if
vibration tests are to be conducted.

Tests to determine structural parameters such as force-deflection characteristics are
recommended for all areas which include known nonlinearities. Testing of nonlinear local
structure is particularly recommended to verify the structural mathematical model or
provide structural characteristics if the structure was not amenable to analysis. Tolerances
in the test data should be established.

Static tests, including appendage deployment for spacecraft, environmental testing
(especially cold-soak, high-temperature, and acoustic), static balance, and engine
alignment should be conducted, as necessary, to verify or obtain structural data required
for interaction analyses. The vehicle weight, moments of inertia, and center of mass
should also be obtained.

Vibration testing is recommended to determine mode shapes, modal frequencies. and
structural damping ratios (refs. 10 and 63 to 65). For small spacecraft having
requirements for vibration-table testing, the vibration table and the associated test setup
should be used for tests to determine modal data as appropriate. For launch vehicles,
entry vehicles, and large spacecraft, excitation by a system of electromagnetic shakers is
recommended. To obtain the free-free modes, the vehicle should be suspended or
mounted to reproduce the true inflight boundary conditions as closely as possible. Local
as well as overall response should be monitored, especially at stations where important
control-system instrumentation might be located.

Dynamic testing of spacecraft should be conducted throughout appendage deployment
when practical. Certain highly flexible structures such as booms may not be amenable to
test; therefore, it is recommended that these structures be tested as subsections. Also,
highly flexible appendages should be considered as experiment packages until sufficient
flight-test data are available on their response characteristics. Retraction or jettison of the
appendages should be considered if serious interaction problems are anticipated.
Spin-stabilized spacecraft should be dynamically balanced.
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4.3.2 Structure and Control-System Tests

Dynamic structural tests conducted on the ground with the control system operating
closed-loop is recommended only if proper precaution has been taken to simulate intlight
boundary conditions or to evaluate interactions that could occur under the existing test

conditions.

Data from flight tests should be used to verify predictions of structure and control-system
interaction. If special inputs or maneuvers are performed in flight to evaluate interactions.
provision should be made for post-launch evaluation of the vehicle and to allow inflight
adjustments of the control system to negate any interaction effects. Flight data should be
compared to ground-test data to verify ground-test procedures. Inflight vibration tests
should be conducted for manned spacecraft and entry vehicles. Winged entry vehicles

should undergo flight flutter testing.
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(Structures)
(Guidance

and Control)
(Guidance

and Control)
(Environment)

(Guidance
and Control)
(Structures)

(Environment)
(Environment)

(Structures)

(Environment)

Bufteting During Atmospheric Ascent, May 1964
Revised November 1970
Flight-Loads Measurements During Launch and
Exit, December 1964
Flutter, Buzz, and Divergence. July, 1964
Panel Flutter, July 1964
Solar Electromagnetic Radiation, June 1965

— Revised May 1971

Local Steady Aerodynamic Loads During Launch
and Exit, May 1965

Buckling of Thin-Walled Circular Cy.inders, Sep-
tember 1965 — Revised August 1968

Prelaunch Ground Wind Loads, November 1965

Propellant Slosh Loads, August 1968

Models of Mars Atmosphere (1967), May 1968

Models of Venus Atmosphere (1968), December
1968

Natural Vibration Modal Analysis, September 1968

Meteoroid Environment Model - 1969 [Near
Earth to Lunar Surface], March 1969

Entry Thermal Protection, August 1968

Guidance and Navigation for Entry Vehicles,
November 1968

Effects of Structural Flexibility on Spacecraft
Control Systems, April 1969

Magnetic Fields — Earth and Extraterrestrial,
March 1969

Spacecraft Magnetic Torques, March 1969

Buckling of Thin-Walled Truncated Cones, Sep-
tember 1968

Mars Surface Models (1968), May 1969

Models of Earth’s Atmosphere (120 to 1000 km),
May 1969

Staging Loads, February 1969

Lunar Surface Models, May 1969
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SP-8024

SP-8025

SP-8026

SP-8027

SP-802&

SP-8029

SP-8030

SP-8031
SP-8032

SP-8033

SP-8034

SP-8035
SP-8036

SP-8037
SP-8038
SP-8040
SP-8041
SP-8042
SP-8043
SP-8044
SP-8045

SP-8046

SP-8047

SP-8048

(Guidance
and Control)
(Chemical
Propulsion)
(Guidance
and Control)
(Guidance
and Control)
(Guidance
and Control)
(Structures)

(Structures)

(Structures)

(Structures)

(Guidance

and Control)
(Guidance

and Control)
(Structures)
(Guidance

and Control)
(Environment)

(Environment)

(Structures)

(Chemical

Propulsion)
(Structures)
{Structures)
(Structures)
(Structures)
(Structures)

(Guidance
and Control)
{Chemical
Propulsion)

Spacecraft Gravitational Torques, May 1969

Solid Rocket Motor Metal Cases, April 1970

Spacecraft Star Trackers, July 1970

Spacecraft Radiation Torques. October 1969

Entry Vehicle Control. November 1969

Aerodynamic and Rocket-Exhaust Heating During
Launch and Ascent, May 1969

Transient Loads from Thrust Excitation, February
1969

Slosh Suppression. May 1969

Buckling of Thin-Walled Doubly Curved Shells,
August 1969

Spacecraft Earth Horizon Sensors, December 1969

Spacecraft Mass Expulsion Torques. December
1969

Wind Loads During Ascent, June 1970

Effects of Structural Flexibility on Launch Vehicle
Control Systems, February 1970

Assessment and Control of Spacecraft Magnetic
Fields, September 1970

Meteoroid Environment Model - 1970 (Interplane-
tary and Planetary), October 1970

Fracture Control of Metallic Pressure Vessels,
May 1970

Captive-Fired Testing of Solid Rocket Motors,
March 1971

Meteoroid Damage Assessment, May 1970

Design-Development Testing, May 1970

Qualification Testing, May 1970

Acceptance Testing, April 1970

Landing Impact Attenuation for Non-Surface-
Planing Landers, April 1970

Spacecraft Sun Sensors, June 1970

Liquid Rocket Engine Turbopump Bearings, March
1971
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SP-8049
SP-8050
SP-8051
SP-8052

SP-8053

SP-8054
SP-8055

SP-8056
SP-8057

SP-8058

SP-8059

SP-8060
SP-8061

SP-8062
SP-8063
SP-8065
SP-80066
SP-8067
SP-8068
SP-8070

SP-8071

SP-8072

SP-8074

SP-8077

SP-8079

NASA-Langley, 1972

(Environment)

(Structures)
(Chemical
Propulsion)
(Chemical
Propulsion)

(Structures)

(Structures)
(Structures)

{Structures)
(Structures)

(Guidance
and Control)
(Guidance
and Control)
(Structures)
(Structures)

(Structures)
(Structures)
(Guidance

and Control)
(Structures)

(Environment)

(Structures)
(Guidance
and Control)
(Guidance
and Control)
(Structures)

(Guidance
and Control)

(Structures)

(Structures)

The Earth’s [onosphere, March 1971
Structural Vibration Prediction, June 1970
Solid Rocket Motor Igniters, March 1971

Liquid Rocket Engine Turbopump Inducers, May
1971

Nuclear and Space Radiation Effects on Materials,
June 1970

Space Radiation Protection, June 1970

Prevention of Coupled Structure-Propulsion Insta-
bility (Pogo), October 1970

Flight Separation Mechanisms, October 1970

Structural Design Criteria Applicable to a Space
Shuttle, January 1971

Spacecraft Aerodynamic Torques, January 1971

Spacecraft Attitude Control During Thrusting
Maneuvers, February 1971

Compartment Venting, November 1970

Interaction with Umbilicals and Launch Stand,
August 1970

Entry Gasdynamic Heating, January 1971

Lubrication, Friction, and Wear, June 1971

Tubular Spacecraft Booms (Extendible, Reel
Stored), February 1971

Deployable Aerodynamic Deceleration Systems,
June 1971

Farth Albedo and Emitted Radiation, July 1971

Buckling Strength of Structural Plates, June 1971

Spaceborne Digital Computer Systems, March 1971

Passive Gravity-Gradient Libration Dampers, Feb-
ruary 1971

Acoustic Loads Generated by the Propulsion Sys-
tem, June 1971

Spacecraft Solar Cell Arrays, May 1971

Transportation and Handling Loads, September
1971
Structural Interaction With Control Systems,

November 1971
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